
A Short Introduction to Tcl

Remington Furman

January 2, 2025

Outline

About Tcl

Basics

Datatypes

Examples

Q&A

History

▶ Created by John Ousterhout while at UC,
Berkeley
▶ Made to script electronic design automation

tools, like the Magic VLSI design program
▶ Released Tcl in 1988, and Tk in 1991
▶ Declined to work at Netscape in 1994

▶ So we have Javascript in browsers instead

▶ Now managed by a "Tcl Core Team" of about a
dozen members

▶ Popular in the ’90s and declined in popularity in
the last 20 years

https://www.tcl.tk/about/history.html
https://pldb.io/blog/JohnOusterhout.html

What is it?

▶ Tool Command Language
▶ An interpreted scripting language
▶ Feels like a cross between Bash and Lisp, but

easier than both

What is it?

▶ Extensible
▶ Designed to work with external libraries and

programs
▶ Can be extended with Tcl code or libraries

written in C (or other languages with C bindings)
▶ Embeddable

▶ Can be built into other programs to add a
scripting interface

Features

▶ Very well documented
▶ Web, man pages, books, wiki

▶ Simple, minimal syntax
▶ More simple than Bash, Python, Perl1, etc.
▶ This is one of the things I like most about Tcl
▶ Visually uncluttered
▶ Easier to edit, both mecanically and cognitively

Features

▶ "Stringly typed"
▶ "Everything is a string" or can be represented by

a string
▶ String interpolation everywhere
▶ Homoiconic, if you’re into that kind of thing

▶ Code is text, and text is code
▶ Data is text, and text is data
▶ More Lispy than Lisp in that way

▶ Unicode support

Features

▶ Regular expressions
▶ Numerics

▶ Big integers (arbitrary precision, no overflow)
▶ Doubles

▶ Tk GUI library
▶ Multiple OOP libraries to choose from, if you want

Features

▶ Turing complete
▶ I’ll prove it now

What does it look like?

#!/usr/bin/env tclsh9.0
This is an implementation of BF.

BF Program
set prog [split [lindex $argv 0] {}]
set lp [llength $prog]
set ip 0

BF Data
array set data {}
array default set data 0
set dp 0

What does it look like?

proc mb {dir} {
Match a bracket forwards if dir=1,
backwards if dir=-1.
global prog ip
set opp [expr -1 * $dir]
set count 1
while {$count} {

switch [lindex $prog [incr ip $dir]] {
\[{incr count $dir}
\] {incr count $opp}

}
}
if {$dir == 1} {incr count $dir}

}

What does it look like?

BF interpreter
while {$ip < $lp} {

switch [lindex $prog $ip] {
> {incr dp}
< {incr dp -1}
+ {incr data($dp)}
- {incr data($dp) -1}
. {puts -nonewline

[format "%c" $data($dp)]}
, {scan [read stdin 1]

"%c" data($dp)}
\[{ if { !$data($dp) } { mb 1 } }
\] { if { $data($dp) } { mb -1 } }

}
incr ip

}

Turing complete

./bf9.tcl "++++++++[>++++\
[>++>+++>+++>+<<<<-]\
>+>+>->>+[<]<-]>>.\
>---.+++++++..+++.>>.\
<-.<.+++.------.\
--------.>>+.>++."

Hello World!

▶ BF is Turing complete
▶ I showed a working implementation of BF in Tcl
▶ This proves that Tcl is Turing complete as well
▶ Therefore, Tcl is capable of serious work

What’s missing?

▶ Pointers/references, oddly
▶ It took me a while to notice this
▶ Simply store variable names or array element

names in strings to make references
▶ A package manager for easily installing

packages
▶ Use your OS package manager instead
▶ It is possible to export a Tcl interpreter and script

as a standalone program though
▶ A community large enough to achieve global

domination
▶ Looking at you, Python

Latest versions

▶ Tcl 8.6 has been the most recent version since
2012
▶ Tcl 8.6.15 released on 2024-09-13
▶ Still recommended for now

▶ Tcl 9.0 just released on 2024-09-24
▶ Will take a while to roll out packages for

distributions and external Tcl
packages/extensions to be updated

▶ I had to compile Tcl 9.0 myself to try it
▶ Not that hard (configure, make, make install)

Documentation

▶ Web reference
▶ https://www.tcl-lang.org/man/tcl/

TclCmd/contents.htm
▶ Same content as man pages, but easier to

browse
▶ Interactive search at:

▶ https://www.magicsplat.com/tcl-docs/

▶ Man pages in 3tcl section (depending on your
OS)

▶ Tclwiki
▶ https://wiki.tcl-lang.org/
▶ Lots of discussion and code examples here

https://www.tcl-lang.org/man/tcl/TclCmd/contents.htm
https://www.tcl-lang.org/man/tcl/TclCmd/contents.htm
https://www.magicsplat.com/tcl-docs/
https://wiki.tcl-lang.org/

Tcl and the Tk Toolkit, Second Edition
▶ Covers Tcl/Tk 8.5, still useful for 8.6 and 9.0

Where It’s used

▶ gitk
▶ First GUI for Git, written with Tcl/Tk

▶ tkinter
▶ Python bindings for Tk GUI library

▶ FlightAware uses Tcl for ADS-B data collection on
Raspberry Pi
▶ https://github.com/orgs/flightaware/

repositories?q=lang%3Atcl&type=all

▶ EDA tools
▶ Xilinx Vivado, Vitis, and XSCT for FPGA

development
▶ I use these at work

https://github.com/orgs/flightaware/repositories?q=lang%3Atcl&type=all
https://github.com/orgs/flightaware/repositories?q=lang%3Atcl&type=all
https://wiki.tcl-lang.org/page/EDA

TkDocs Tutorial

▶ A useful tutorial on Tk GUIs
▶ Provides side-by-sie code samples in Tcl, Python,

Perl, and Ruby
▶ Sort of like Rosetta code

▶ https://tkdocs.com/tutorial/

https://tkdocs.com/tutorial/

Syntax

▶ A little confusing at first, feels a bit hacky
▶ Once you learn the ruls and get used to them

they form a powerful system
▶ Don’t think in terms of a traditional lexer+parser

structure. It’s more like a shell

▶ The Dodekalogue: twelve rules that specify the
parsing behavior
▶ https://www.tcl-lang.org/man/tcl/

TclCmd/Tcl.htm

https://wiki.tcl-lang.org/page/Dodekalogue
https://www.tcl-lang.org/man/tcl/TclCmd/Tcl.htm
https://www.tcl-lang.org/man/tcl/TclCmd/Tcl.htm

Basics

▶ Every line is a "command" made of space
separated words

▶ The first word is a procedure name
▶ The rest of the "words" (if any) are arguments to

the procedure
▶ Tcl performs variable substitution ($) and

command substitution ([]) in each word before
executing the command

Types of Quotes

▶ Double quotes ("")
▶ Allows a single "word" to contain whitespace
▶ Performs variable substitution ($) and command

substitution ([])
▶ Square brackets ([])

▶ Immediate execution of the text inside the
braces as a command

▶ Expands to the string returned by the command
▶ Strangely doesn’t allow newlines. Escape

newlines with a backslash (\), if needed.
▶ Curly braces ({})

▶ Used for deferred execution
▶ Disables string substitution, command

substitution, newline separators

Variables (set)

▶ Sets a variable (when given two arguments)

set var 1

▶ Reads a variable (when given one argument)

% set var
1

▶ Variable substitution

% puts "var is: $var"
var is: 1

Output
▶ puts prints a string, with trailing newline:

puts "Hello world!"

▶ Use -nonewline to suppress newline:

puts -nonewline "Starting long thing..."
Do something for a while...
puts " done!"

▶ format is a lot like C printf(), with more
options:

% format 0x%x 100
0x64
% format 0b%b 100
0b1100100

Comments (#)

▶ Comments, like everything else in Tcl, are a
command

This is a comment.

▶ Warning! Commands have to start on a new
line, or after a semicolon, including comments

puts "$var" ; # Print var.

Control Flow Commands

▶ All control flow is done with commands
▶ There is no special syntax or pasing for

conditionals

Conditionals (if, else, etc.)

if {condition_expression} {
true_cmds

} else {
false_cmds

}

▶ if command expects all arguments on one line
▶ Must use the "One True Brace Style" with curly

braces to span multiple lines

Loops (for)

▶ Like a for loop in C:

for {set i 0} {i < 0} {incr i} {
puts $i

}

▶ Form: for init test update body
▶ The second argument is an "expression string"

evaluated with expr
▶ More on expr later

Loops (foreach)

▶ Loops through every element in a list:

foreach {element} $list {
puts $element

}

Procedures (proc)

▶ Tcl’s term for functions is "procedures"
▶ "proc" for short

proc example {arg1 {arg2 default}} {
puts "arg1: $arg1"
puts "arg2: $arg2"

}

▶ Procedures always return a string
▶ Possibly empty

Tcl Command Internals

▶ C programs take a list of null-terminated strings:

int
main(int argc, char *argv[]) {

return 0;
}

▶ Argument strings can have spaces in them, just
like Tcl "words"

▶ This is a major inspiration for the Tcl language

Tcl Command Internals

▶ Early Tcl procedures took a list of strings and
some interpreter state:

int
Tcl_CmdProc(ClientData clientData,

Tcl_Interp *interp,
int argc, char *argv[]) {

interp->result = "true";
return TCL_OK;

}

Tcl Command Internals

▶ Tcl later switched to using Tcl_Obj structs for
representing values:

int
Tcl_CmdProc(ClientData clientData,

Tcl_Interp *interp,
int objc, Tcl_Obj *const objv[]) {

Tcl_SetObjResult(interp,
Tcl_NewBooleanObj(1));

return TCL_OK;
}

▶ This allows optimizations for data structures like
dictionaries.

expr

▶ The expr command provides infix syntax for
math

▶ Infix notation very similar to C syntax and features

% puts [expr 0x07 | (1<<3)]
15

▶ The expr command is a neat example of how to
include a mini-language in Tcl

https://www.tcl-lang.org/man/tcl8.7/TclCmd/expr.html

Math Functions

▶ expr supports all the C standard library math
functions and a few more:

abs acos asin atan
atan2 bool ceil cos
cosh double entier exp
floor fmod hypot int
isqrt log log10 max
min pow rand round
sin sinh sqrt srand
tan tanh wide

https://www.tcl-lang.org/man/tcl/TclCmd/mathfunc.htm

Lisp-like Math Functions

▶ You can get Lisp-like math functions in the
::tcl::mathfunc and ::tcl::mathop
namespaces:

% ::tcl::mathfunc::max 1 2 3 4
4
% ::tcl::mathop::+ 1 2 3 4
10

Tcl is "stringly typed"

▶ Everything can be represented by a string
▶ This includes code!

▶ String representation used for both input and
output

▶ Strings are first class objects
▶ Under the hood, variables can be implemented

as other types to increase performance
▶ Automatically converted to and from strings as

necessary

"Shimmering"

▶ A frequent conversion between a string
representation and an optimized type and back

▶ Avoided by calling only commands that operate
on the optimized representation (dict
commands, for example)

Lists (list, lindex, etc)

▶ Lists are simply represented as space separated
words in a string

▶ Can be created with the list command
▶ And efficiently operated on with many

commands starting with l:
▶ llength, linsert, lsort, etc.

set sharps {c cis d dis e f fis g gis a ais b}
lsort -decreasing $sharps
gis g fis f e dis d cis c b ais a

Dictionaries (dict)
▶ Dictionaries are simply a list of alternating key

value pairs in a string
▶ Can be created and modified with the dict

command and sub-commands
▶ dict create, dict set, dict keys, etc.

set pitch_names {
sharps {C CZ D DZ E F FZ G GZ A AZ B}
flats {C D\ D E\ E F G\ G A\ A B\ B}
both {C CZ/D\ D DZ/E\ E F FZ/G\ G GZ/A\ A

AZ/B\ B}↪→

}
set interval_dict {

W 2 H 1 T 2 S 1
P1 0 m2 1 M2 2 m3 3 M3 4 P4 5 TT 6
P5 7 m6 8 M6 9 m7 10 M7 11 P8 12

}

Arrays (array)

▶ Arrays are groups of Tcl variables with hash table
semantics

▶ For example:

set array(element1) 1
set index element1
puts $array($index)
1

▶ Kind of wonky, and I much prefer the newer dict
methods

Example: Hamming distance
Given two bit strings a and b, count the number of
bits that differ (popcount(a XOR b)).

01110100011001010111001101110100
XOR 01110010011001010111001101110100

00000110000000000000000000000000

proc hamming_distance {a b} {
return [regexp -all 1 \

[format %b \
[expr 0b$a ^ 0b$b]]]

}

% hamming_distance $a $b
2

Q&A

▶ Any questions?

	About Tcl
	Basics
	Datatypes
	Examples
	Q&A

