AWK

A Short Infroduction

Remington Furman

Thursday, March 8th, 2019

Remington Furman AWK

Outline

Sed
AWK
Examples

Longer Examples

Remington Furman AWK

Sed

>

No talk about Awk can fail to mention sed.
“Stream Editor”, from Bell Labs in 1974
Automated version of the Unix ed editor

One of the earliest tools to use regular expressions

v

v

v

Remington Furman AWK

Sed

v

Operates on input text line by line
Simple semantics

» If line matches some pattern, perform action
Widely known for the s/search/replace/g
command

Has a limited set of single letter commands

v

v

v

Remington Furman AWK

Sed

v

v

v

v

v

Worth learning and very useful
Great for one-line scripts
» Especially in Unix command pipelines

Is Turing complete, but that would be painful
Has no (user-defined) variables
Switch to AWK if sed can’t do your task

Remington Furman AWK

AWK

» Another text stream processing language
» Developed at Bell Labs in 1977

» Alfred Aho
» Peter Weinberger
» Brian Kernighan

» These folks knew their compiler theory

Remington Furman AWK

Awk

>

Has a built-in execution model
» Makes scripts simpler to write
Basic ideaq, for each line:
» pattern { action }
If a line matches a pattern, then the action is
performed
Patterns are often regular expressions
» Can also be other tests/conditions

v

v

v

Remington Furman AWK

Event-based programming

Another way to look at awk:
» An event based programming language
» Events are regular expressions (or other conditions)

Remington Furman AWK

Obligatory XKCD Reference

WHENEVER T LEARN A

OH NO! THE KILER
MUST HAVE FOLLOWED)

BUT 0 FIND THEM WED HAVE T0 SEARCH
THROUGH 200 MB OF EMAILS LOOKING FOR

HER ON VACATION | swrrulrrs FORMATIED LIKE AN ADORESS!
|
f % j}\i\‘— 75 HoPELESS!
T KNOW REGULAR

EXPRESSIONS .

Obligatory regexp warning

» Regular expressions are great for parsing bits of text
» Don’t fry to parse nested structures like:
» Whole chunks of HTML, XML, YAML, etc

» Why?

Remington Furman AWK

Chomsky knows it won’t work

Remington Furman AWK

People on the infernet get mad

21 Answers oldest

votes

You can't parse [XJHTML with regex. Because HTNL can't be parsed by regex. Regex s not a tool that
4§14 can be used to correcty parse HTHL. AS | have answered in HTML-and-regex questions here so many
times before, the use of regex wil not allow you to consume HTML. Regular expressions are a tool that is
W insufficiently sophisticated to understand the constructs employed by HTML. HTML s not a reguiar
language and hence cannot be parsed by regular expressions. Regex queries are not equipped to break
down HTNL into its meaningful parts. so many times but t is not getting to me. Even enhanced irregular
regular expressions as used by Perl are not up to the task of parsing HTML. You will never make me
crack HTMLis a language of sufficient complexity that it cannot be parsed by regular expressions. Even
Jon Skeet cannot parse HTML using regular expressions. Every time you attempt to parse HTML with
reguiar expressions. the unholy child weeps the blood of virgins, and Russian hackers pn your webapp.
Parsing HTML with regex summons tainted souls into the realm of the living. HTML and regex go together
like love, marriage. and ritual infanticide. The <center> cannot hold it s too late. The force of regex and
HTML together in the same conceptual space willdestroy your mind like S0 much watery putty. If you
parse HTML with regex you are giving in to Them and their blasphemous ways which doom us all to
inhuman toil for the One whose Name cannot be expressed in the Basic Muliingual Plane. he comes
HTML-plus-regexp wil liquify the nerves of the sentient whilst you observe, your ithering in the,
onslaught of horror. Reg€x-based HTML parsers are the cancer that is killing StackOverflow it is t0o late
itis too late we cannot be saved the trangession of a child ensures regex will consume all living tissue
(except for HTML which it cannot, as previously prophesied) dear (07 help Us how can anyone survive
this scourge using regex to parse HTML has doomed humanity to an etemnity of dread torture and
security holes ysing regex as a tool to process HTML establishes a breach befiveen this worid and the
dread reaim of Corrupt enties (like SGML entities, but more corrupt) a mere glimpse of the world of reg
ex parsers for HTML will instantly transport a programmer’s consciousness info a worid of ceaseless
screaming, he comes-the-pestient-sithy regex-infection will devour your HTWIL parser, application and
existence for all time like Visual Basic only worse he comes he comes do not ight he coms, his unholy
radiance’destroging all enligntenment, HTML tags leaking fegm your eyes/like liquic pain. the song of
e ill extinguisn the voices of mortal man fropn the sphere | can see it can you
s beautl he f $nal snuf fing of 1€ es of Man ALL IS LOST ALL IS LOST the pory fie
cones he s tfg ichor permeates all 1Y FACEd?)!F%«H god no NO NOOOO N©
stop the anZgiEs are not red| ZALGo |s Yom THE PONY,| @

Have you tried using an XML parser nstead?

edited Nov 14 at 0:18
bobince

Back to awk

» Basic ideq, for each line:
» pattern { action }

» If aline matches a pattern, then the action is
performed

Remington Furman AWK

Sane defaults

» Either pattern or action can be omitted
» A blank pattern matches all lines
» A blank action prints the whole input line
» These commands are the same:
» $ awk '// { print }’ input.txt
» $ awk ’{ print }’ input.txt # No pattern
» $ awk " //' input.txt # No action

Remington Furman AWK

Special patterns

» BEGIN - Acftion is run before any input is read
» Initialize variables
» Print headers

» END - Action is run after all input is read

» Process variables
» Print footers

Remington Furman AWK

Records and Fields

v

A core concept in Awk

Awk will automatically parse input lines for you
By default

» Eachlineis a record
» Each whitespace separated bit of text is a field

You can change the field and record delimiters
» Useful for comma separated values (CSV files)

v

v

v

Remington Furman AWK

Records and Fields

>

The entire input line is stored in variable $0

The first field isin $1, etc
These variables can be used in patterns and actions
» Lines are parsed before patterns are tested

Note: the delimiters between fields are not saved

v

v

v

Remington Furman AWK

Examples

Examples

v

Simple grep:
» $ awk ' /regexp/’ input.txt
Simple cut:
» $ awk ’{ print $2 } ’ input.txt
Simple cat:
» $ awk ‘{print $0}’ input.txt input.txt
printf .
» $ awk ' { printf "%$0.2f\n", $2 } '’ input.txt

v

v

v

Remington Furman AWK

Examples

grep

$ cat input.txt

line 1, red, OxFF0000
line 2, green, 0x00FFO0O0
line 3, blue, 0x0000FF

$ awk ' /green/’ input.txt
line 2, green, 0x00FF00

Remington Furman AWK

Examples

cuft

$ cat input.txt

line 1, red, OxFF0000
line 2, green, 0x00FF00
line 3, Dblue, 0x0000FF

$ awk ’"{ print $3 } ' input.txt
red,

green,

blue,

Remington Furman AWK

Examples

cat

$ cat input.txt

line 1, red, OxFF0000
line 2, green, 0x00FF00
line 3, blue, 0x0000FF

$ awk ' {print $0}’ input.txt input.txt

line 1, red, OxXFFO0000
line 2, green, O0xO00FFO0O0
line 3, blue, 0x0000FF
line 1, red, OxFF0000
line 2, green, O0x00FFO0O0
line 3, blue, 0x0000FF

Remington Furman AWK

Examples

printf

$ cat input.txt

line 1, red, OxFF0000
line 2, green, O0xO00FFO0O0
line 3, blue, 0x0000FF

$ awk ’"{ printf "%0.2f\n", $2 }’ input.txt
1.00
2.00
3.00

Remington Furman AWK

Examples

printf 2

$ cat input.txt

line 1, red, OxFF0000
line 2, green, 0x00FF00
line 3, Dblue, 0x0000FF

$ awk ’{ print $3": "strtonum($4) }’ input.txt
red,: 16711680

green, : 65280

blue, : 255

Remington Furman AWK

Bash one-liners

» When calling awk from a shell, quoting becomes
important
» In general, wrap the awk commands in single quotes
» This prevents the shell from messing with it

Remington Furman AWK

Variables

» Variables don’t need to be declared before use
» Either strings or floating point numbers
» Also arrays and associative arrays

Remington Furman AWK

Built-in variables

Some commonly used built-in variables:

NR - number of records seen so far

NFE - number of fields in current record

RS - record separator (default is newline)
Fs - field separator (default is whitespace)

v

v

v

v

Remington Furman AWK

Examples

FS example

Parsing comma separated values with custom field
separator

$ cat input.txt

line 1, red, OxFF0000
line 2, green, O0x00FFO0O0
line 3, blue, 0x0000FF

$ awk -v FS=', *’ \
"{ print $1, $2, $3, $4 }’ input.txt
line 1 red OxFF0000
line 2 green 0x00FF0O0
line 3 blue 0x0000FF

Remington Furman AWK

Examples

Variable example
Simple wc (word count)

$ cat input.txt

line 1, red, OxFF0000
line 2, green, O0x00FFO0O0
line 3, blue, 0x0000FF

$ awk "{ w += NF; c¢ += length +1 }; \
END {print NR, w, c} ' input.txt
3 12 75

$ wc input.txt
3 12 75 input.txt

Remington Furman AWK

Bash shebang line

For writing longer scripts:
» #!/usr/bin/awk -f
» Need to use the -£ flag to make awk happy

» The shell will expand . /script . awk to:
/usr/bin/awk —-f ./script.awk

Remington Furman AWK

Longer Examples

POV

Slow rapidly scrolling text by pausing every few seconds
#!/usr/bin/awk —-f
BEGIN { print_time = 1;

stall_time = 2;

start = systime(); }

if (systime() > start + print_time) {

system("sleep " stall_time);
start = systime(); }
print;

Remington Furman AWK

Longer Examples

CSV to JSON

How to convert this from CSV 1o JSSON?

$ cat morganm.txt
S1, CHERRY RED

S2, PERSIMMON

S3, TANGERINE

Large CSV and JSON libraries, or awk?

Remington Furman AWK

Longer Examples

CSV to JSON

#!/usr/bin/awk -f

BEGIN { FS="," ; print "{" }

{ print "\""$l"\": {"
print " \"name\": \""S2"\""
p]fil’lt " },n

}

END { print "}" }

The ugliness comes from having to quote all the quotes.

Remington Furman AWK

Longer Examples

CSV to JSON

$./morganm.awk morganm.txt

{
llSlll . {
"name": "CHERRY RED"
by
" 82 " : {
"name": "PERSIMMON"
|
"83" : {
"name": "TANGERINE"
|
}

Remington Furman AWK

Longer Examples

QOops

JSON doesn’t like a trailing comma.
Let’s fix that while sfill using the awk programming model.

Remington Furman AWK

Longer Examples

CSV to JSON 2

$ cat morganm?2.awk
#!/usr/bin/awk -f

BEGIN { FS="," ; print "{" }
{ if (NR > 1) print ","
prlnt "\llll$lll\": {"

print " \"name\": \""$2"\""
printf " }"

END { print "\n}" }

Remington Furman AWK

Longer Examples

CSV to JSON 2

$./morganm2.awk morganm.txt

{
llSlll . {
"name": "CHERRY RED"
by
" 82 " : {
"name": "PERSIMMON"
|
"83" : {
"name": "TANGERINE"
}
}

Remington Furman AWK

Longer Examples

Questions?

Any questions?

Remington Furman AWK

	Sed
	AWK
	Examples
	Longer Examples

